Tag Archives: contamination

Industrial Oil: Wholesale or Retail?

The volume of oil required to be purchased is defined by the needs of the company or the facility.  Normally, a large amount of oil is purchased wholesale, while a smaller amount needed for the replacement of oil fir one or several machines, is usually purchased retail.

Based on price, it would seem that wholesale purchases are better for your company financially.  The price of a large batch of oil per liter purchased wholesale will be lower than purchasing smaller retail volumes pre liter.

There are however, problems with large amounts of oil.  Wholesale volumes of oil must be stored somewhere. Industrial oil is obviously sensitive to various contaminants such as water, particulate matter and other unwanted contaminants.  Apart from allotting storage facilities, the oil also requires constant monitoring of purity and and water content.

Purity of industrial oil purchased wholesale or in smaller retail batches can be ensured by two methods:

  • Prevention of contamination in storage; and
  • Purification of contaminated oil.

Both include a whole range of measures.  As stated above, purity of industrial oil can be ensured by prevention or purification, but the best results are achieved by combining the two.  This also allows savings of money since preventive measures require quite less investment than actual purification and regeneration.

Prevention alone however, cannot maintain industrial oil’s purity in the long run.  It requires a complex approach to transportation and storage using the following equipment:

  • air-tight tanks;
  • equipment made from non-corroding materials;
  • correct temperature in storage and transportation;
  • and the use of inert gases to fill gas space.

This increases the cost of prevention.  The goal therefore, is to reduce the amount of contaminants as much as possible in the oil going to purification devices, which finalize the required purity of the product.

The following systems from GlobeCore GmbH are recommended for the purification and regeneration of industrial oil:

●      Mobile oil unit CММ-1.7 CM;
●      Mobile oil unit CММ-3.5 CM;
●      Mobile oil unit CММ-5 CM;
●      Filter cart CFU-0.8М;
●      Filter cart CFU-1.7М, (CFU-4).

Industrial Oil Sales: Preserving the Oil’s Performance Characteristics

So, you have decided to sell industrial oil?  Let’s assume that you already have found a storage facility for the product.  One thing remains however, knowing what the consumer needs and how to provide that need.

Besides better terms of supply, lower price, and various discounts, the client is mostly interested in the quality of the product.  Industrial oil quality in our case.  The quality is a combination of many parameters and characteristics that must not fall below regulated specifications during storage, transportation and operation.

Let us look into the characteristics, which define the quality of industrial oil and are important for the client’s choice:

  • Viscosity.  This is the first thing to consider about oil.  It is very important for the use of the majority of industrial oils.  When friction parts are designed and calculated, the parameter taken into consideration is the dynamic viscosity of the oil.  This is a regulated parameter of all oil made from crude base stock.  Dynamic viscosity used be defined at between 50ºС/122ºF and 100ºС/212ºF. That has changed and now all measurements are made according to ISO 3448-75 (instead of measuring viscosity at 50ºС/122ºF, the reference temperature is now 40ºС/104ºF).  When choosing industrial oil, the buyer usually considers three critical viscosity values: optimal at working temperature, minimal at maximum working temperature and maximum at the lowest working temperature;
  • Pour Point. This parameter is defined by testing a sample of the oil.  The Pour Point is the lowest temperature that the oil will continue to flow.  This temperature does not entirely indicate the dynamics of the oil in operating conditions at low temperatures.  That is shown better by actual viscosity at a given temperature. To reduce the pour point of industrial oil, it is mixed with special additives. This parameter is meaningful to the buyer planning his storage operations, dispatch, and draining and for using the oil in low temperature environments;
  • Flashpoint. This is the temperature at which the vapor of the oil can form a flammable mixture with the air. It defines the relative fire hazard of the oil and shows the presence of volatile fractions within it.  It is measured in special open or closed type devices;
  • Ash content. This parameter indicates the amount of non-organic contaminants left after burning a sample of the industrial oil. It is expressed in percentage of weight.  If ash content of oil without additives is too high, it indicates insufficient purification.  In most cases, ash content of industrial oil is from 0.002% to 0.4%;
  • Content of particulate matter, solvents, water, water-soluble acids and bases. This indication is extremely important in controlling the oil quality after production as well as determination of its further usability.  Mobile oil purification units for treatment and regeneration of oil can significantly increase the service life of the oil and improve reliability of machinery;

In practice, GlobeCore products are used for the purification and regeneration of industrial oil.

  • Color.  The color is a visual indication of the purity of industrial oil.  It also allows the buyer to make a judgment on the oil’s origins.  Keep in mind that some additives can make the oil darker.  If the color of the oil changes during use however, this is an indirect indication of its oxidation and/or contamination;
  • Acid number. Knowing this important neutralization number allows the buyer to determine the oil’s purity as well as the stability in use and in storage.  Additives can increase the acidity of the oil, but can also increase the stability of oil for long term use and storage;
  • Sulfur content.  The amount of sulfur initially depends on the amount of sulfur in the crude base stock the oil was blended from and the degree of purification and refinement.  After purification of industrial oils made from sour crude, sulfur remains in the oil in organic compounds and under normal conditions does not cause corrosion of metals.  Sulfur may become aggressive in elevated temperatures.  The content of sulfuric compounds is higher in oil with additives. This is due to the fact that additives containing sulfur are mixed with industrial oil to increase their lubrication qualities.

Oil filtration

During operation, transformer oil accumulate contaminants, which can form various chemicals. These substances reduce the oil’s performance and are, of course, undesirable.

Operation of the transformer becomes unstable. To prevent this, transformer oil is filtered and purified. Some of the methods are discussed in more detail below.

The first stage of transformer oil purification is mechanical. This is a superficial treatment to remove particulate matter and water. The next step is deeper purification performed in vacuum with heating.

The first two stages are, in fact, preliminary. The main process involves various chemicals.

One of the methods is purification of oil with a 98% sulfuric acid solution.

In comparison to other chemical purification methods, the use of sulfuric acid has a significant drawback. Beside reacting with the contaminants, the acid also adversely influecnes the structure of the oil, making it somewhat unstable. Additional processes are required to resolve that problem.

The nature of selective purification is evident from the title. Speical solvents are introduced into the oil to remove specific impurities.

De-waxing is another widely accepted process. In this process, oil is treated with special solvents: acetone, toluene, bensol etc, to remove solid contaminants.

It should be noted that chemical methods influence oil’s stability, but extend the oil’s service life at the same time.

It should also be remembered that any purification process should end with finishing purification, closing the cycle of oil processing and filtration. This is usually done by contact method.

This means that the oil is mixed with special materials, usually clay or bleaching earth. The materials are then mixed and heated. Heating facilitates acviation of all sorbents in the clay.

These absorbents capture contaminants. Deep filtration separates oil from the clay. When selecting adsorbent, it is necessary to pay attention to the content of moisture. It should be suffucient to make production efficient and to make processed oil compliant with specifications.

The most interesting technology today involves the use of bleaching clays (Fuller’s earth). Globecore manufactures a range of CMM type units for filtration of various oils with the use of Fuller’s earth. The advantages of the design are the ability of multiple reactivation of the sorbent, mobility, simplicity of operation and high quality of the output product.

Downtime is significantly reduced by the ability to reactivate the sorbent without the need for frequent replacement, thus increasing process efficiency.

Influence of Hydraulic Fluid Contamination on Equipment Wear

According to recent industry statistics, 70-80% of hydraulic system malfunctions and up to 90% of bearing failures are caused by media contamination.

Types of Contamination and the Long Term Impact

The performance, quality, and purity of operating fluids directly affect the reliability and the service life of pumps, hydraulic drives and various hydraulic equipment installed in mobile and stationary locations.  If high precision hydraulic equipment is used with gaps between moving parts of 5 to 24 microns, then the use of high quality hydraulic fluid that is free from contaminates is a must to ensure continuous trouble free operation of the system.  The effects of contamination on the performance of equipment will vary and depends on the size and composition of the contamination.

The aggressive effects of fluid contamination is detrimental to the reliability and durability of hydraulic systems.  Undesirable consequences may be caused by solid particles carried by the fluid that enter through the gaps in the system.  Contamination will be found on the surfaces of flat friction pairs, valve facets etc.  This unwanted contamination leads to increased wear and equipment failures that include hydraulic lock, clogging of small valves, plunger jamming, loss of valve tightness and other system failures.

Axial-plunger pumps and the control slides of automatic control systems are especially sensitive to fluid contamination.  Solid particles of comparable sizes to the gaps pose the biggest threat to plunger and slide pairs.

Entry of Contaminants into the Hydraulic Systems

There are five ways contaminants can enter hydraulic system:  (1) Through insufficient and improper cleaning of components and parts during manufacture (metal files, remaining abrasives, fragments of construction material etc;  (2) through the introduction of contaminated fluid when initially filling or refilling the system;  (3) through the introduction of contaminants during assembly and repairs;  (4) through the wear and corrosion of parts during normal operation; and (5) from dust and dirt that enters through vents or loose hydraulic tank plugs.

Particle Size

Despite the fact that Solid Contaminants are extremely small, they can still accelerate the aging of oil, cause rapid wear of components, and cause failure and malfunction of operating assemblies.

Gaps in Typical Hydraulic System Components

In modern hydraulic systems, the gaps between components are limited to the range of 1 to 25 microns.  Lately, as technology and machining processes improve, the gaps have been decreasing raising the fluid quality and purity requirements higher and higher.

Contamination reduces the reliability of hydraulic equipment and accelerates its wear and shortens effective service life.  Hence the reason research into the most efficient ways of purification has been part of the industry for decades.  GlobeCore is a leader in research and development of purification systems that are efficient and protect the environment.

Purification

GlobeCore offers a line of UVR vacuum purification systems that are designed for purification of hydraulic fluid, turbine oil, industrial oil, mineral oil, compressor oil, and transformer oils.  The UVR units are built around a vacuum and adsorbent treatment process.  These systems can also lighten the product appearance and remove paraffins and some sulfur from fuels.

The main advantage of the UVR plants is their economy and versatility (requires no additional adjustments when switching from one product to another since the machine operates in an automatic mode).

GlobeCore is the Industry leader in the manufacture of the highest quality oil purification systems anywhere in the world today.